

Building An Omniscient
Debugger In Rust

Robert O’Callahan
Pernosco

“Point in time” debugging
→
Omniscient data analysis and
visualization!

Omniscient Debugging
● Build an efficiently searchable database of all program states

– E.g. all memory and register writes
ODB, Chronomancer, Chronon…

● How to achieve acceptable overhead in real-world debugging
situations?

● What is the ideal debugger UI when you drop “point in time”
implementation constraints?

External CI

User rr recordings

CI monitoring

Test failure reproduction
ECS cluster

Recorded traces S3 bucket

Database builder
AWS Lambda + EC2 instances

Databases S3 bucket

Application server

Web client

UsersWebsite server

In Rust

Project Organization
● Mono-repo: 118K lines Rust, 178K total

– Gitlab
– AWS-hosted CI runners

● 74 Rust crates
● 2 Cargo workspaces: “main”, “musl”
● 30 built executables, 34 examples
● 8 Docker containers

A Word About Microservices: “No”
● Each deployed service adds complexity

– Version skew
– Failure modes

● Only split out a service when it needs to start,
stop, fail or update independently of other code

Taming Build Times
● Deep crate graphs →large binaries,

slow build times, especially during linking
● Move non-deployed binaries (examples,

tools, tests) to “toplevel” crate
● Fold all tests into a single “suite” binary
● Fold all other binaries into a single “multitool” binary

– Use “exec stubs” that delegate to multitool

A

B

C

Taming Build Times
● Linkers do not handle DWARF debuginfo and Rust well
● If you only use a tiny part of a crate, ALL the debuginfo for

that crate is linked in
– Rust relies on –gc-sections to extract only the used functions

from a library
– --gc-sections does not affect DWARF linking

● My patch in latest LLD partially fixes this, will be in LLVM 9

Testing
● Rust makes it easy to write tests
● 9500 lines of Rust tests

– Plus 4300 lines of “test subjects” code

● 1500 lines of Python+Selenium Web client tests
● 393 non-test “assert!”s
● 195 uses of “unsafe” in 18 (out of 74) crates

– Almost all code is safe

Third Party Crates
● Massive advantage for Rust over C++
● We use lots of third-party crates
● Ability to (temporarily?) fork a crate and patch it

is essential (and works well)
● Try to contribute upstream with bug reports and

PRs

Third Party Crates: Base
● Popular Rust crates that are great:

– serde (bincode, JSON, YAML)
– nom parser
– ring (crypto)

● Less great:
– tokio (error prone, hard to debug)

Parallelism
● Huge Rust superpower
● Pernosco DB builds do a lot of heavy lifting

– 10s to 100s of GB of data produced
– Saturate a c5d.18xlarge for ~hour (36 cores)

● Only USD 0.70 on spot!

● Only 1 data race bug in history of project
– In an obsolete crossbeam version!

Third Party Crates: Parallelism
● Rayon is great for data parallelism but we don’t get

much of that
● Crossbeam channels
● Scoped threads and thread pools

– Have been using scopedpool
– Moving to Crossbeam scoped threads and Rayon thread

pools: separating the concepts works better

Third Party Dependencies: AWS
● Rusoto EC2, ECR, ECS, Lambda, S3, SES,

SNS, CloudFormation
● Not very idiomatic Rust but gets the job done
● Need to layer on retry logic for network errors

etc in practice (other AWS SDKs do this for you)
● lambda_runtime for AWS Lambda

Third Party Dependencies: APIs
● dkregistry (Docker)
● hubcaps (Github)
● jsonwebtoken for JWT/Oauth
● travis

Third Party Dependencies: Web
● actix-web for static site server
● hyper/http for simple dynamic serving

– All behind a Traefik (Go) reverse proxy/TLS terminator
– Traefik has issues but no better alternative known...

● tokio-tungstenite for Websocket server
● rustls (TLS) --- OpenSSL is horrible to deploy

– Ok if you don’t talk to legacy servers/clients

Third Party Dependencies: Misc
● Servo “gaol” for sandboxing (forked)
● lapin for AMQP (annoying)
● capnp for Cap’n Proto (good)
● clap/structopt for CLI parsing (brilliant)
● xmas-elf for ELF parsing (obsolete, should use goblin)
● gimli for DWARF parsing (good)
● petgraph for graphs (unmaintained)

Rust Issues: Error Handling
● Error handling: using failure and error-chain, but

no clear/easy path for implementing complex
errors

Rust Issues: Async
● Lots of async code
● Mostly on futures 0.1 but some crates use 0.2
● Our nastiest code is async code
● Really looking forward to async/await and

reunification of the async ecosystem

Rust Issues: Dependencies
● Need alerts when a dependent crate has known

critical bugs or security issues
● Need crates to adopt stable 1.0 APIs

Rust Issues: Build Times
● Building is still far slower than C++
● Our project is not very big and still takes 10 minutes

on a monster machine
● Build pipelining should help but there is much further

to go to match C++
● Not entirely a fair comparison since C++ requires

manual code structuring to achieve fast parallel builds

Rust Issues: Debugging
● Rust non-optimized builds are very slow
● Rust optimized builds are hard to debug

– LLVM optimization passes lose track of variables

● The problem will get worse with async/await
● Pernosco can help but LLVM needs work

Rust Issues: IDEs
● If anything, has gone backwards over the last 3

years
● RLS does not scale to large multi-crate

workspaces
● Not much seems to be happening :-(

Positive Impressions
● High probability “if it compiles, it works”

– Can refactor with confidence

● Can design types to prevent many kinds of
mistakes
– E.g. String and numeric newtypes

● Easy deployment of self-contained binaries

Positive Impressions
● Confident handling of untrusted input
● Bugs are easier to reproduce and fix

– Only one race-detection bug
– Only a few memory corruption bugs

● Time and space efficiency
– Fairly easy to profile and optimize at high and low levels

Conclusions
● It has been fun writing Pernosco in Rust
● The core language and library and the crate

ecosystem are getting steadily better
● Even a very small team can get a lot done in

Rust and get very solid results

