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“Point in time” debugging
→
Omniscient data analysis and 
visualization!



Omniscient Debugging
● Build an efficiently searchable database of all program states

– E.g. all memory and register writes
ODB, Chronomancer, Chronon…

● How to achieve acceptable overhead in real-world debugging 
situations?

● What is the ideal debugger UI when you drop “point in time” 
implementation constraints?
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Project Organization
● Mono-repo: 118K lines Rust, 178K total

– Gitlab
– AWS-hosted CI runners

● 74 Rust crates
● 2 Cargo workspaces: “main”, “musl”
● 30 built executables, 34 examples
● 8 Docker containers



A Word About Microservices: “No”
● Each deployed service adds complexity

– Version skew
– Failure modes

● Only split out a service when it needs to start, 
stop, fail or update independently of other code



Taming Build Times
● Deep crate graphs →large binaries,

slow build times, especially during linking
● Move non-deployed binaries (examples,

tools, tests) to “toplevel” crate
● Fold all tests into a single “suite” binary
● Fold all other binaries into a single “multitool” binary

– Use “exec stubs” that delegate to multitool
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Taming Build Times
● Linkers do not handle DWARF debuginfo and Rust well
● If you only use a tiny part of a crate, ALL the debuginfo for 

that crate is linked in
– Rust relies on –gc-sections to extract only the used functions 

from a library
– --gc-sections does not affect DWARF linking 

● My patch in latest LLD partially fixes this, will be in LLVM 9



Testing
● Rust makes it easy to write tests
● 9500 lines of Rust tests

– Plus 4300 lines of “test subjects” code

● 1500 lines of Python+Selenium Web client tests
● 393 non-test “assert!”s
● 195 uses of “unsafe” in 18 (out of 74) crates

– Almost all code is safe



Third Party Crates
● Massive advantage for Rust over C++
● We use lots of third-party crates
● Ability to (temporarily?) fork a crate and patch it 

is essential (and works well)
● Try to contribute upstream with bug reports and 

PRs



Third Party Crates: Base
● Popular Rust crates that are great:

– serde (bincode, JSON, YAML)
– nom parser
– ring (crypto)

● Less great:
– tokio (error prone, hard to debug)



Parallelism
● Huge Rust superpower
● Pernosco DB builds do a lot of heavy lifting

– 10s to 100s of GB of data produced
– Saturate a c5d.18xlarge for ~hour (36 cores)

● Only USD 0.70 on spot!

● Only 1 data race bug in history of project
– In an obsolete crossbeam version!



Third Party Crates: Parallelism
● Rayon is great for data parallelism but we don’t get 

much of that
● Crossbeam channels
● Scoped threads and thread pools

– Have been using scopedpool
– Moving to Crossbeam scoped threads and Rayon thread 

pools: separating the concepts works better



Third Party Dependencies: AWS
● Rusoto EC2, ECR, ECS, Lambda, S3, SES, 

SNS, CloudFormation
● Not very idiomatic Rust but gets the job done
● Need to layer on retry logic for network errors 

etc in practice (other AWS SDKs do this for you)
● lambda_runtime for AWS Lambda



Third Party Dependencies: APIs
● dkregistry (Docker)
● hubcaps (Github)
● jsonwebtoken for JWT/Oauth
● travis 



Third Party Dependencies: Web
● actix-web for static site server
● hyper/http for simple dynamic serving

– All behind a Traefik (Go) reverse proxy/TLS terminator
– Traefik has issues but no better alternative known...

● tokio-tungstenite for Websocket server
● rustls (TLS) --- OpenSSL is horrible to deploy

– Ok if you don’t talk to legacy servers/clients



Third Party Dependencies: Misc
● Servo “gaol” for sandboxing (forked)
● lapin for AMQP (annoying)
● capnp for Cap’n Proto (good)
● clap/structopt for CLI parsing (brilliant)
● xmas-elf for ELF parsing (obsolete, should use goblin)
● gimli for DWARF parsing (good)
● petgraph for graphs (unmaintained)



Rust Issues: Error Handling
● Error handling: using failure and error-chain, but 

no clear/easy path for implementing complex 
errors



Rust Issues: Async
● Lots of async code
● Mostly on futures 0.1 but some crates use 0.2
● Our nastiest code is async code
● Really looking forward to async/await and 

reunification of the async ecosystem



Rust Issues: Dependencies
● Need alerts when a dependent crate has known 

critical bugs or security issues
● Need crates to adopt stable 1.0 APIs



Rust Issues: Build Times
● Building is still far slower than C++
● Our project is not very big and still takes 10 minutes 

on a monster machine
● Build pipelining should help but there is much further 

to go to match C++
● Not entirely a fair comparison since C++ requires 

manual code structuring to achieve fast parallel builds



Rust Issues: Debugging
● Rust non-optimized builds are very slow
● Rust optimized builds are hard to debug

– LLVM optimization passes lose track of variables

● The problem will get worse with async/await
● Pernosco can help but LLVM needs work



Rust Issues: IDEs
● If anything, has gone backwards over the last 3 

years
● RLS does not scale to large multi-crate 

workspaces
● Not much seems to be happening :-(



Positive Impressions
● High probability “if it compiles, it works”

– Can refactor with confidence

● Can design types to prevent many kinds of 
mistakes
– E.g. String and numeric newtypes

● Easy deployment of self-contained binaries



Positive Impressions
● Confident handling of untrusted input
● Bugs are easier to reproduce and fix

– Only one race-detection bug
– Only a few memory corruption bugs

● Time and space efficiency
– Fairly easy to profile and optimize at high and low levels



Conclusions
● It has been fun writing Pernosco in Rust
● The core language and library and the crate 

ecosystem are getting steadily better
● Even a very small team can get a lot done in 

Rust and get very solid results


