Rust Debugging Techniques

Robert O’'Callahan
Pernosco

Context

Fed up with state of debugging tools
Created “rr” project at Mozilla

Left Mozilla in 2016 to start Pernosco
Pernosco: 113K lines of Rust

“Printf” Debugging

#[derive(Debug)]
struct Point { x: 132, y: 132 }

fn stuff(p: &Point) {
println! ("Point 1is: {:?}", p);

dbg! Macro

2 .

let a ;
dbg! (a*2) + 1;

let b

[src/malin.rs:2] a * 2 = 4

Logging

use log: :debug;
fn stuff(p: &Point) {
debug! ("Point 1is: {:?}", p);

RUST LOG=debug target/debug/test crate
DEBUG 2019-05-06T02:34:20Z: test crate: hello

Don'’t forget env_logger::init()!

Assertions

* Make your code easier to debug by catching
mistakes early

assert!(remaining == 0);
assert!(remaining == 0,

"{} remaining”, remaining);
assert eq!(remaining, 0);
 Good documentation

* Makes tests more powerful

Release Assertions

 assert! runs in release builds
* debug assert! runs only in debug builds
* Pernosco mostly uses assert!

Backtraces

RUST BACKTRACE=1 target/debug/test crate
thread 'main' panicked at 'assertion
failed: remaining == 0', src/main.rs:4:3

6: test crate::stuff

at src/main.rs:4
/: test crate::main

at src/main.rs:7/

Levelling Up: gdb

* Lots of functionality, but non-discoverable

break where continue print
run commands condition

watch -1 up down finish
next step nextil stepil
disass registers

info threads thread
print user function()

Rust gdb Tips

* Use gdb 8.2 or later for improved Rust support
(prettyprinting enums)

* break rust panic with hook
« set lang c when you get desperate

Debuginfo Quality
 LLVM’'s DWARF debuginfo Is poor in opt builds

Clang Vs Gcc

1

0.9

0.8

0.7
S 06
B
S8 05 m clang
S ® gec
e 04
@
a)

0.3

0.2

0.1

0

Parameters Local Variables All
Variable Category

Limitations Of Traditional Debuggers

* Debugging follows effects back to causes

* Traditional debuggers let you execute forwards,
stop, Inspect program state

- “execute forwards”: wrong direction
- “stop”: can break your application

* Traditional debuggers require multiple runs
- Don’t work with hard-to-reproduce bugs

Record And Replay

* Record program execution without slowing it
down much

* Replay recorded execution as many times as
you want, with a debugger

e Simulate reverse execution

Overhead relative to baseline

2.50
2.00
1.50
1.00
0.50
0.00

rr Overhead

octane
Workload

htmltest

sambatest

B Record
B Replay
Single Core

Reverse Execution

Watchpoint hit

h I I I I

Watchpomt hit

Debugging With Reverse Execution

(gdb) watch -1 mRect.width

(gdb) reverse-continue

nsIFrame: :SetRect
(this=0x2aaadd7dbeb®, aRect=...)
718 mRect = aRect;

(gdb) reverse-next

e Chandler Carruth ()
& Follow . d
@chandlerc1024

Debug on Linux at all? Stop and go get "rr
RIGHT NOW?. Biggest improv. to debugging
for me ever. H/T Justin Lebar.

Moves Vs Watchpoints

* Reverse execution with data watchpoints is an
r'r superpower

* Rust move-heavy code messes it up
- Watchpoints stop at a move
- Need to adjust address and continue :-(

“Printf” Vs gdb For Rust

* Printf debugging:
- #[derive(Debug)]
- Works well with optimized builds
- Slow Rust compile times

* Debugger:
— Rust nonoptimized builds are very slow
- Debugging async code (futures) is horrible

Pernosco

* |s record-and-replay with reverse execution the
ultimate in debugging?

NO!

“Point in time” debugging

R

Omniscient data analysis and
visualization!

Omniscient Debugging

Build an efficiently searchable database of all program states

- E.g. all memory and register writes
ODB, Chronomancer, Chronon...

How to achieve acceptable overhead in real-world debugging
situations?

What is the ideal debugger Ul when you drop “point in time”
Implementation constraints?

Demo

. ﬁ and return 1 of y:du

https://rr-pOJct.rg
https://github.com/mozilla/rr
https://pernos.co

https://github.com/mozilla/rr

