

Rust Debugging Techniques

Robert O’Callahan
Pernosco

Context
● Fed up with state of debugging tools
● Created “rr” project at Mozilla
● Left Mozilla in 2016 to start Pernosco
● Pernosco: 113K lines of Rust

“Printf” Debugging

#[derive(Debug)]
struct Point { x: i32, y: i32 }

fn stuff(p: &Point) {
 println!("Point is: {:?}", p);
 …

dbg! Macro

let a = 2;
let b = dbg!(a*2) + 1;

[src/main.rs:2] a * 2 = 4

Logging
use log::debug;
fn stuff(p: &Point) {
 debug!("Point is: {:?}", p);
 …

RUST_LOG=debug target/debug/test_crate
DEBUG 2019-05-06T02:34:20Z: test_crate: hello

Don’t forget env_logger::init()!

Assertions
● Make your code easier to debug by catching

mistakes early

assert!(remaining == 0);
assert!(remaining == 0,
 "{} remaining”, remaining);
assert_eq!(remaining, 0);
● Good documentation
● Makes tests more powerful

Release Assertions
● assert! runs in release builds
● debug_assert! runs only in debug builds
● Pernosco mostly uses assert!

Backtraces

RUST_BACKTRACE=1 target/debug/test_crate
thread 'main' panicked at 'assertion
failed: remaining == 0', src/main.rs:4:3
…
 6: test_crate::stuff
 at src/main.rs:4
 7: test_crate::main
 at src/main.rs:7
…

Levelling Up: gdb
● Lots of functionality, but non-discoverable

break where continue print
run commands condition
watch -l up down finish
next step nexti stepi
disass registers
info threads thread
print user_function()

Rust gdb Tips
● Use gdb 8.2 or later for improved Rust support

(prettyprinting enums)
● break rust_panic_with_hook
● set lang c when you get desperate

Debuginfo Quality
● LLVM’s DWARF debuginfo is poor in opt builds

Limitations Of Traditional Debuggers
● Debugging follows effects back to causes
● Traditional debuggers let you execute forwards,

stop, inspect program state
– “execute forwards”: wrong direction
– “stop”: can break your application

● Traditional debuggers require multiple runs
– Don’t work with hard-to-reproduce bugs

Record And Replay
● Record program execution without slowing it

down much
● Replay recorded execution as many times as

you want, with a debugger
● Simulate reverse execution

rr Overhead

cp octane htmltest sambatest
0.00

0.50

1.00

1.50

2.00

2.50

Record
Replay
Single Core

Workload

O
ve

rh
ea

d
re

la
tiv

e
to

 b
as

el
in

e

replay

Watchpoint hit
Watchpoint hit

Reverse Execution

Debugging With Reverse Execution

(gdb) watch -l mRect.width
(gdb) reverse-continue
nsIFrame::SetRect
(this=0x2aaadd7dbeb0, aRect=...)
718 mRect = aRect;

(gdb) reverse-next

Moves Vs Watchpoints
● Reverse execution with data watchpoints is an

rr superpower
● Rust move-heavy code messes it up

– Watchpoints stop at a move
– Need to adjust address and continue :-(

“Printf” Vs gdb For Rust
● Printf debugging:

– #[derive(Debug)]
– Works well with optimized builds
– Slow Rust compile times

● Debugger:
– Rust nonoptimized builds are very slow
– Debugging async code (futures) is horrible

 Pernosco
● Is record-and-replay with reverse execution the

ultimate in debugging?

NO!

“Point in time” debugging
→
Omniscient data analysis and
visualization!

Omniscient Debugging
● Build an efficiently searchable database of all program states

– E.g. all memory and register writes
ODB, Chronomancer, Chronon…

● How to achieve acceptable overhead in real-world debugging
situations?

● What is the ideal debugger UI when you drop “point in time”
implementation constraints?

Demo

https://rr-project.org
https://github.com/mozilla/rr
https://pernos.co

https://github.com/mozilla/rr

